研测动态问题的旋转孔径 散斑照相法 I 双孔、四扇孔

顾杰沈永昭蔡铭之 (苏州大学物理系)

提 要

本文提出一种研测动态问题的实验新方法——旋转孔径散斑照相法。该法设备简单,利用一个旋转 孔径装置,能在一张散斑图上记录下物体动态变形的全过程,然后在全场波滤分析时把各瞬时的信息分 离出来,可得任意时刻的瞬态位移场。转孔法能应用于振动和非周期性动态问题,并以三个实验证实其 可行性。实验结果表明,散斑条纹清晰可靠,定量分析与其它方法所得结果一致。

关键词: 散斑照相,旋转孔径,位移场,动态问题,同步,衍射晕。

一、引 言

常用动态散斑方法有许多种。其中尤以时间平均法^[1] 最为简单,但它不能得到振动体的相位。频闪法^[2] 虽克服了时间平均法的不足,然而为了得到振动全过程,必须拍摄多张散斑图,以及还需专用的频闪仪。高速照相^[3] 和脉冲曝光法^[4] 不仅需要昂贵的设备,且也和频闪法一样,只能得到某几个瞬时的位移场。本文介绍转孔法,设备简单,应用方便,不仅能在一张散斑图上记录下全动态过程,并可连续地再现出来。

二、旋转孔径散斑照相法原理

图 1(a) 和(b) 是转孔法的记录系统和分析系统。用连续激光照明动态物体,把一个双

收稿日期: 1986年2月26日; 收到修改稿日期: 1986年11月3日

孔装在紧靠于相机镜头前的旋转装置上。拍摄散斑图时物体位移状态与孔的不同位置对 应,它们被散斑图的不同空间频率携带。旋转双孔的散斑衍射晕是一个圆环(及一个中央亮 斑),如图2(a)所示。图2(b)中两个阴影小圆表示某一时刻双孔的位置。单由这双孔拍摄 散斑图,产生的衍射晕是图2(b)中晕环上的两个圆(及中央亮斑的一部分)。在任一晕圆上 滤波得到与孔径位置相对应的位移状态的全场信息。

(1)

Fig. 2

转孔法可应用于振动问题,但必须使物体振动和孔径旋转保持同步。设物体的振动频 率与孔径的转动频率之比为整数 n。由文献[5]出发,可导出全场条纹公式为

 $I(x, y) = K \cos^2 \frac{\pi}{\lambda f} [u(x, y, \theta) x_f + v(x, y, \theta) y_f],$

式中

 $u(x, y, \theta) = u(x, y, n\theta + \theta_0 + m\pi) - u(x, y, nm\theta + m\theta_0),$ $v(x, y, \theta) = v(x, y, n\theta + \theta_0 + m\pi) - v(x, y, nm\theta + m\theta_0),$ $m = 1 \text{ Bf } n = 1, 3, 5, \cdots,$ $m = 0 \text{ Bf } n = 2, 4, 6, \cdots,$ (2)

1. n=奇数

见图 3(a)。此时物体振动(n/2)次,孔径旋转半圈(图中 n=3)。由于孔径是中心对称的,旋转半圈前后的两个瞬间孔径完全一样,记录到的是相位差为 nm 的两个状态,它们被相同的空间频率携带,相当于双曝光。因为孔径和状态都相应地连续变化,振动物体的全部动态信息(相位差为 m 的两状态的相对信息)被晕环上各空间频率携带。晕环的角坐标相当于振动体的相位轴。设 $\theta=0$ 的晕环点上滤波得到的相位是 θ_0 及 $\theta_0+\pi$ 的两状态对应,则在 θ 角的晕环点上滤波得到相位为 n $\theta+\theta_0$ 及 n $\theta+\theta_0+\pi$ 的两状态的相关条纹。条纹表示式为(1)、(2)式,取 m=1。(1)、(2)式中的 u、v 在平面问题中是 x、y 方向上的位移场,在散焦散斑法中是像面共轭面上的客观散斑运动场^[61]。(x₁, y₁)是滤波孔的位置

$$r = \sqrt{x_f^2 + y_f^2}$$
, $\theta = \text{tg}^{-1}(y_f/x_f)$.

图 8(a) 中 n(=3) 条水平线上的 n 对孔径位置虽然不一样,却对应于相同的振动状态,可见

研测动态问题的旋转孔径散斑照相法 I:双孔、四扇孔

信息在半圈晕环中重复了 n 次。结论为 n 是奇数时, 连续曝光一次制成散斑图, 振动体前半周期和后半周期的信息展开在

 $0 \leq \theta \leq (\pi/n)$

的晕环上。

12 期

2. n=偶数

见图 3(b),显然这时同一空间频 率只携带一个状态的信息。为了造成 一个参考状态,需要在物体静止时加 曝光一次(孔径照样旋转)。在 θ 角的 晕环上滤被得到相位是 $n\theta+\theta_0$ 的状 态和平衡态的相关条纹。条纹表示式 为(1)、(2)式,取m=0。结论为n是 偶数时在动、静态下各曝光一次制成 散斑图,振动体全周期的信息展开在 $0 \leqslant \theta \leqslant (2\pi/n)$

 \overline{A} $\frac{1}{6}$ $\frac{1}{1}$ $\frac{1}{6}$ $\frac{1}{1}$ $\frac{1}{6}$ $\frac{1}{1}$ $\frac{1}{1}$

的晕环中。

同步保证了振动状态和孔径位置 间确定的对应关系,因而曝光量可以自由控制。

转孔法同样适用于非周期性动态问题,那时可把非周期动态问题看成是只有一个周期的振动的特例来处理,这时 θ 和时间对应。因为变形状态不再多次重复,应选用 n=1 或 2。 n≥3 的情况不太合适。n=1 时使动态全过程中孔径转一圈,完成曝光; n=2 时使动态过程 中孔径转半圈,并曝光,再对平衡态曝光(孔径也转半圈)。

三、孔径的形式

使用图 2(b) 所示双孔, 可得到清晰的全场条纹, 但双孔法有两个缺点: (1) 此法曝光时间较长。为此作者改进后采用图 4(a) 的双扇孔, 它拉长了孔径在半径

1071

方向的尺度,加大了开孔面积,缩短了曝光时间。其衍射晕如图 4(b)所示,由一个宽带晕环 和中央亮斑组成。同时,我们导出使两者不交迭的条件是

光学学报

$$r_1 \cos(\alpha/2) \ge \frac{1}{2} \sqrt{(r_1+d)^2 + r_1^2 - 2(r_1+d)r_1 \cos \alpha}$$

7 袋

(3)

由于其晕环较宽,能选用不同的灵敏度,但是,双孔法只适用于轴对称问题(或某个方向的位 移为已知的问题,如单向形变)。

(2) 此法只能得到某一状态在一个方向上的位移场。为此作者采用如图 5(a) 所示的四小扇孔的旋转孔径,其衍射晕是三个晕环和一个中央亮斑,如图 5(b) 所示。经计算得三圈晕互不交迭的条件为

$$r_{2}\cos(\alpha/2) \ge r_{2} + d,$$

$$r_{1}\cos(\alpha/2) \ge \frac{1}{2} \sqrt{(r_{1}+d)^{2} + (r_{2}+d)^{2} + 2(r_{1}+d)(r_{2}+d)\sin\alpha_{o}}$$

$$(4)$$

分析时在外圈晕上取一个滤波位置,在垂直方向的中圈晕上也取一个滤波位置,见图5(c), 这样能得到同一瞬态(或对相瞬态)位移场在两个方向的信息*。

四、实 验

下面用三个实验来验证转孔法,前两个是振动实验,后一个是非周期性动态实验。

1. 平面圆盘摆动实验

如图 6 所示中心简支的圆盘, 令其绕中心作周期性摆动。 用图 5(a)的四个扇形孔径作旋转孔, 采取机械手段实现两者 精确同步, 取 n=1。一方面用转孔法测量了角位移与相位的 关系, 另一方面将千分表测量值换算成角位移, 二种方法所测 得的结果列于表 1。得到最大误差是 5.7%, 说明转孔法足以 能用于定量分析, 在滤波孔后直接观察条纹时, 发现随着θ的

1072

12.期

研测动态问题的旋转孔径散斑照相法 I: 双孔、四扇孔

1073

filtering position θ		0	<u>π</u> 12	<u> or</u> 6	<i> </i>	<u>σ</u> 3	$\frac{5\pi}{12}$	$\frac{\sigma}{2}$	$\frac{7\pi}{12}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	$\frac{11\pi}{12}$	75
angnlar displacement 10 ⁻³ rad.	dial gauge analysis	0	0.444	0.858	1.213	1.485	1.657	1.741	1.657	1.485	1.213	0.858	0.449	0
	speckle analysis	0	0.419	0.887	1.245	1.529	1.690	1.715	1.645	1.474	1.187	0.819	0.421	0
retative error %		0	5.7	3.4	2.6	2.9	2.0	2.0	0.7	0.8	2.1	4.5	5.3	0

连续变化,可观察到条纹也随之连续变化,即能把动态过程连续地再现出来。

2. 扬声器振动状态实验

上述圆盘实验中频率较低,为了探索频率较高时转孔法的可行性,用扬声器振动状态的 实验。用光电转换实现准确同步,取 n=2。图7是扬声器两不同状态的散斑条纹图,说明 不同状态的条纹是明显的不同。

Fig. 7

3. 圆板非周期性动态实验

对周边固定的圆板在其上作用气压,在放气减压过程中拍摄圆板的散焦散斑图。用图 4(a)的孔径, 取 n=2。图 8 是($\pi/8$) $\leq \theta \leq (7\pi/8)$ 中每隔($\pi/4$) 弧度滤波得到的四幅散斑照 片,可以看到随着荷载的减小,条纹由密变疏,反映了圆板离面位移梯度场的变化过程。 在某个滤波位置上得到的条纹与这一时刻的荷载对应。用这个荷载值拍摄静态双曝光

Fig. 9 (a) Dynamic (b) Static

散斑图,而且在相同的位置上滤波,应得与上述相同的条纹。图9就是动态过程中某一时刻 的散斑条纹与相应荷载下静态条纹的对比。两图差别很小,验证了转孔法应用于非周期动 态问题的可行性。

五、讨 论

转孔法散斑图的信息量大,便于保存。一次拍摄就能得到全过程,降低了对实验现
 场再现性的要求。

300 T

Fig. 10

2. 公式(1)、(2)认为条纹反映了某一相位的状态,仅仅是个 近似。如图 10 所示,阴影圆是滤波孔,另两个圆示意了各状态的 晕,它们都与滤波孔交界,对条纹都有贡献。设滤波孔的孔函数为

$$B(R-r, \Theta-\theta) = \begin{cases} 1, & (& w \\ 0, & (& w \\ 1, & (& w \\ 0, & (& w \\ 1, & 0 \end{pmatrix} \end{cases}$$
(5)

式中 R 和 Θ 是谱面极坐标。中心在 $(r, \theta + \delta \theta)$ 处的晕是通过孔 函数为

$$A(\xi, \eta, \theta + \delta\theta) = \begin{cases} 1, & (\Lambda h) \\ 0, & (\Lambda h) \end{cases}$$
(6)

的瞬时孔记录在散斑图上的。式中 *ξ* 和 *n* 是转孔平面上的直角坐标。容易证明该晕对滤波 孔范围内复振幅的贡献为

$$u(R, \Theta, \theta + \delta\theta) = B(R - r, \Theta - \theta) \iint A(\xi, \eta, \theta + \delta\theta)$$
$$\cdot A\left(\xi + \frac{qx_{f}}{c}, \eta + \frac{qy_{f}}{c}, \theta + \delta\theta\right) d\xi d\eta, \tag{7}$$

式中 q 是像距。由(7)式可看出:由于相关性质小圆晕中心的值最大,偏离中心的值较小;另 外 δθ 大的晕与滤波孔的交界面积较小,因此随着 δθ 的增大,该状态的贡献很快减小。δθ= 0,即中心状态的贡献最大。可见条纹反映了一个小相位段内各状态的加权平均。照相孔和 滤波孔越小,这个相位段越小,平均效果就越小。但太小的孔径给实验带来困难。在实验中 **3**. 在前述实验中n取1或n,这样有利于信息的分离。大的n值可用于频率较高的情况,但由于一定的信息量压缩在较小的晕弧上,信息的可分离性较差。

4. 理论上说转孔法可应用于任何频率的振动,任意快慢的非周期性动态问题。实际上,由于电机的转速限制了高频端的应用,根据我们的实验条件,作者认为可研究振动频率在 500 Hz 以内的问题;同样,由于电机的转速和曝光功率的限制,转孔法应用于快速过程有一定困难。根据我们的实践,作者认为只能做几秒到几小时范围中的非周期性动态实验。

参考文献

- [1] F. P. Chiang; Opt. Engng, 1982, 21, No. 3 (May/Jun), 379.
- [2] 王习温;私人通讯。
- [3] X. M. Hu, S. J. P. Palmer et al.; Opt. & Laser Technol., 1984, 16, No. 6 (Dec), 303.
- [4] 曹鸿生;私入通讯。
- [5] 顾 杰等; «苏州大学学报», 1986, 2, No. 2 (Jun), 161.
- [6] 伍小平等; «物理学报», 1983, 2, No. 8 (Aug), 973~980.

Rotating aperture method of speckle photography for dynamic problems I: Two-aperture and four-fan-aperture

GU JIE, SHEN YONGZHAO AND CAI MINGZHI (Department of Physics, Suchou University)

(Received 26 February 1986; revised 3 November 1986)

Abstract

In this paper, a new experimental technique—rotating aperture method of speckle photography for dynamic problem is proposed. The displacement field of any moment of a specimen can be obtained, while simple equipment is needed. Using a rotation device, the whole dynamic process can be recorded on a single specklegram, and then information of every moment can be separated from each other easily by whole-field filtering. This method is applicable not only to vibration problems, but also to non-periodic dynamic problems. Three experiments have been carried out for demonstration. Speckle fringes are clear and reliable. Quantitative analysis of experiments agree well with the results obtained from other methods.

Key Words: Speckle photography; Rotating aperture; Displacement-field; Dynamic problem; Synchronization; Diffraction halo.